Source code for procrustes.permutation

# -*- coding: utf-8 -*-
# The Procrustes library provides a set of functions for transforming
# a matrix to make it as similar as possible to a target matrix.
#
# Copyright (C) 2017-2024 The QC-Devs Community
#
# This file is part of Procrustes.
#
# Procrustes is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# Procrustes is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>
#
# --
"""Permutation Procrustes Module."""
from typing import Optional

import numpy as np
import scipy
from scipy.optimize import linear_sum_assignment

from procrustes.kopt import kopt_heuristic_double, kopt_heuristic_single
from procrustes.utils import ProcrustesResult, _zero_padding, compute_error, setup_input_arrays

__all__ = ["permutation", "permutation_2sided"]


[docs] def permutation( a: np.ndarray, b: np.ndarray, pad: bool = True, translate: bool = False, scale: bool = False, unpad_col: bool = False, unpad_row: bool = False, check_finite: bool = True, weight: Optional[np.ndarray] = None, ) -> ProcrustesResult: r"""Perform one-sided permutation Procrustes. Given matrix :math:`\mathbf{A}_{m \times n}` and a reference matrix :math:`\mathbf{B}_{m \times n}`, find the permutation transformation matrix :math:`\mathbf{P}_{n \times n}` that makes :math:`\mathbf{AP}` as close as possible to :math:`\mathbf{B}`. In other words, .. math:: \underbrace{\text{min}}_{\left\{\mathbf{P} \left| {[\mathbf{P}]_{ij} \in \{0, 1\} \atop \sum_{i=1}^n [\mathbf{P}]_{ij} = \sum_{j=1}^n [\mathbf{P}]_{ij} = 1} \right. \right\}} \|\mathbf{A} \mathbf{P} - \mathbf{B}\|_{F}^2 This Procrustes method requires the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices to have the same shape, which is guaranteed with the default ``pad=True`` argument for any given :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices. In preparing the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices, the (optional) order of operations is: **1)** unpad zero rows/columns, **2)** translate the matrices to the origin, **3)** weight entries of :math:`\mathbf{A}`, **4)** scale the matrices to have unit norm, **5)** pad matrices with zero rows/columns so they have the same shape. Parameters ---------- a : ndarray The 2D-array :math:`\mathbf{A}` which is going to be transformed. b : ndarray The 2D-array :math:`\mathbf{B}` representing the reference matrix. pad : bool, optional Add zero rows (at the bottom) and/or columns (to the right-hand side) of matrices :math:`\mathbf{A}` and :math:`\mathbf{B}` so that they have the same shape. translate : bool, optional If True, both arrays are centered at origin (columns of the arrays will have mean zero). scale : bool, optional If True, both arrays are normalized with respect to the Frobenius norm, i.e., :math:`\text{Tr}\left[\mathbf{A}^\dagger\mathbf{A}\right] = 1` and :math:`\text{Tr}\left[\mathbf{B}^\dagger\mathbf{B}\right] = 1`. unpad_col : bool, optional If True, zero columns (with values less than 1.0e-8) on the right-hand side are removed. unpad_row : bool, optional If True, zero rows (with values less than 1.0e-8) at the bottom are removed. check_finite : bool, optional If True, convert the input to an array, checking for NaNs or Infs. weight : ndarray, optional The 1D-array representing the weights of each row of :math:`\mathbf{A}`. This defines the elements of the diagonal matrix :math:`\mathbf{W}` that is multiplied by :math:`\mathbf{A}` matrix, i.e., :math:`\mathbf{A} \rightarrow \mathbf{WA}`. Returns ------- res : ProcrustesResult The Procrustes result represented as a class:`utils.ProcrustesResult` object. Notes ----- The optimal :math:`n \times n` permutation matrix is obtained by, .. math:: \mathbf{P}^{\text{opt}} = \arg \underbrace{\text{min}}_{\left\{\mathbf{P} \left| {[\mathbf{P}]_{ij} \in \{0, 1\} \atop \sum_{i=1}^n [\mathbf{P}]_{ij} = \sum_{j=1}^n [\mathbf{P}]_{ij} = 1} \right. \right\}} \|\mathbf{A} \mathbf{P} - \mathbf{B}\|_{F}^2 = \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {[\mathbf{P}]_{ij} \in \{0, 1\} \atop \sum_{i=1}^n [\mathbf{P}]_{ij} = \sum_{j=1}^n [\mathbf{P}]_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\mathbf{A}^\dagger\mathbf{B} \right] The solution is found by relaxing the problem into a linear programming problem. The solution to a linear programming problem is always at the boundary of the allowed region. So, .. math:: \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {[\mathbf{P}]_{ij} \in \{0, 1\} \atop \sum_{i=1}^n [\mathbf{P}]_{ij} = \sum_{j=1}^n [\mathbf{P}]_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\mathbf{A}^\dagger\mathbf{B} \right] = \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {[\mathbf{P}]_{ij} \geq 0 \atop \sum_{i=1}^n [\mathbf{P}]_{ij} = \sum_{j=1}^n [\mathbf{P}]_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\left(\mathbf{A}^\dagger\mathbf{B}\right) \right] This is a matching problem and can be solved by the Hungarian algorithm. The cost matrix is defined as :math:`\mathbf{A}^\dagger\mathbf{B}` and the `scipy.optimize.linear_sum_assignment` is used to solve for the permutation that maximizes the linear sum assignment problem. """ # check inputs new_a, new_b = setup_input_arrays( a, b, unpad_col, unpad_row, pad, translate, scale, check_finite, weight, ) # if number of rows is less than column, the arrays are made square if (new_a.shape[0] < new_a.shape[1]) or (new_b.shape[0] < new_b.shape[1]): new_a, new_b = _zero_padding(new_a, new_b, "square") # compute cost matrix C = A.T B c = np.dot(new_a.T, new_b) # compute permutation matrix using Hungarian algorithm p = _compute_permutation_hungarian(c) # compute one-sided permutation error error = compute_error(new_a, new_b, p) return ProcrustesResult(new_a=new_a, new_b=new_b, t=p, error=error)
[docs] def permutation_2sided( a: np.ndarray, b: np.ndarray, single: bool = True, method: str = "k-opt", guess_p1: Optional[np.ndarray] = None, guess_p2: Optional[np.ndarray] = None, pad: bool = False, unpad_col: bool = False, unpad_row: bool = False, translate: bool = False, scale: bool = False, check_finite: bool = True, options: Optional[dict] = None, weight: Optional[np.ndarray] = None, lapack_driver: str = "gesvd", ) -> ProcrustesResult: r"""Perform two-sided permutation Procrustes. Parameters ---------- a : ndarray The 2D-array :math:`\mathbf{A}` which is going to be transformed. b : ndarray The 2D-array :math:`\mathbf{B}` representing the reference matrix. single : bool, optional If `True`, the single-transformation Procrustes is performed to obtain :math:`\mathbf{P}`. If `False`, the two-transformations Procrustes is performed to obtain :math:`\mathbf{P}_1` and :math:`\mathbf{P}_2`. method : str, optional The method to solve for permutation matrices. For `single=False`, these include "flip-flop" and "k-opt" methods. For `single=True`, these include "approx-normal1", "approx-normal2", "approx-umeyama", "approx-umeyama-svd", "k-opt", "soft-assign", and "nmf". guess_p1 : np.ndarray, optional Guess for :math:`\mathbf{P}_1` matrix given as a 2D-array. This is only required for the two-transformations case specified by setting `single=False`. guess_p2 : np.ndarray, optional Guess for :math:`\mathbf{P}_2` matrix given as a 2D-array. pad : bool, optional Add zero rows (at the bottom) and/or columns (to the right-hand side) of matrices :math:`\mathbf{A}` and :math:`\mathbf{B}` so that they have the same shape. unpad_col : bool, optional If True, zero columns (with values less than 1.0e-8) on the right-hand side are removed. unpad_row : bool, optional If True, zero rows (with values less than 1.0e-8) at the bottom are removed. translate : bool, optional If True, both arrays are centered at origin (columns of the arrays will have mean zero). scale : bool, optional If True, both arrays are normalized with respect to the Frobenius norm, i.e., :math:`\text{Tr}\left[\mathbf{A}^\dagger\mathbf{A}\right] = 1` and :math:`\text{Tr}\left[\mathbf{B}^\dagger\mathbf{B}\right] = 1`. check_finite : bool, optional If True, convert the input to an array, checking for NaNs or Infs. options : dict, optional A dictionary of method options. weight : ndarray, optional The 1D-array representing the weights of each row of :math:`\mathbf{A}`. This defines the elements of the diagonal matrix :math:`\mathbf{W}` that is multiplied by :math:`\mathbf{A}` matrix, i.e., :math:`\mathbf{A} \rightarrow \mathbf{WA}`. lapack_driver : {'gesvd', 'gesdd'}, optional Whether to use the more efficient divide-and-conquer approach ('gesdd') or the more robust general rectangular approach ('gesvd') to compute the singular-value decomposition with `scipy.linalg.svd`. Returns ------- res : ProcrustesResult The Procrustes result represented as a class:`utils.ProcrustesResult` object. Notes ----- Given matrix :math:`\mathbf{A}_{n \times n}` and a reference :math:`\mathbf{B}_{n \times n}`, find a permutation of rows/columns of :math:`\mathbf{A}_{n \times n}` that makes it as close as possible to :math:`\mathbf{B}_{n \times n}`. I.e., .. math:: &\underbrace{\text{min}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \|\mathbf{P}^\dagger \mathbf{A} \mathbf{P} - \mathbf{B}\|_{F}^2\\ = &\underbrace{\text{min}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \text{Tr}\left[\left(\mathbf{P}^\dagger\mathbf{A}\mathbf{P} - \mathbf{B} \right)^\dagger \left(\mathbf{P}^\dagger\mathbf{A}\mathbf{P} - \mathbf{B} \right)\right] \\ = &\underbrace{\text{max}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\mathbf{A}^\dagger\mathbf{P}\mathbf{B} \right]\\ Here, :math:`\mathbf{P}_{n \times n}` is the permutation matrix. Given an intial guess, the best local minimum can be obtained by the iterative procedure, .. math:: p_{ij}^{(n + 1)} = p_{ij}^{(n)} \sqrt{ \frac{2\left[\mathbf{T}^{(n)}\right]_{ij}}{\left[ \mathbf{P}^{(n)} \left( \left(\mathbf{P}^{(n)}\right)^T \mathbf{T} + \left( \left(\mathbf{P}^{(n)}\right)^T \mathbf{T} \right)^T \right) \right]_{ij}} } where, .. math:: \mathbf{T}^{(n)} = \mathbf{A} \mathbf{P}^{(n)} \mathbf{B} Using an initial guess, the iteration can stops when the change in :math:`d` is below the specified threshold, .. math:: d = \text{Tr} \left[\left(\mathbf{P}^{(n+1)} -\mathbf{P}^{(n)} \right)^T \left(\mathbf{P}^{(n+1)} -\mathbf{P}^{(n)} \right)\right] The outcome of the iterative procedure :math:`\mathbf{P}^{(\infty)}` is not a permutation matrix. So, the closest permutation can be found by setting ``refinement=True``. This uses :class:`procrustes.permutation.PermutationProcrustes` to find the closest permutation; that is, .. math:: \underbrace{\text{min}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \|\mathbf{P} - \mathbf{P}^{(\infty)}\|_{F}^2 = \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\mathbf{P}^{(\infty)} \right] The answer to this problem is a heuristic solution for the matrix-matching problem that seems to be relatively accurate. **Initial Guess:** Two possible initial guesses are inferred from the Umeyama procedure. One can find either the closest permutation matrix to :math:`\mathbf{U}_\text{Umeyama}` or to :math:`\mathbf{U}_\text{Umeyama}^\text{approx.}`. Considering the :class:`procrustes.permutation.PermutationProcrustes`, the resulting permutation matrix can be specified as initial guess through ``guess=umeyama`` and ``guess=umeyama_approx``, which solves: .. math:: \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\mathbf{U}_\text{Umeyama} \right] \\ \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger\mathbf{U}_\text{Umeyama}^\text{approx.} \right] Another choice is to start by solving a normal permutation Procrustes problem. In other words, write new matrices, :math:`\mathbf{A}^0` and :math:`\mathbf{B}^0`, with columns like, .. math:: \begin{bmatrix} a_{ii} \\ p \cdot \text{sgn}\left( a_{ij_\text{max}} \right) \underbrace{\text{max}}_{1 \le j \le n} \left(\left|a_{ij}\right|\right)\\ p^2 \cdot \text{sgn}\left( a_{ij_{\text{max}-1}} \right) \underbrace{\text{max}-1}_{1 \le j \le n} \left(\left|a_{ij}\right|\right)\\ \vdots \end{bmatrix} Here, :math:`\text{max}-1` denotes the second-largest absolute value of elements, :math:`\text{max}-2` is the third-largest abosule value of elements, etc. The matrices :math:`\mathbf{A}^0` and :math:`\mathbf{B}^0` have the diagonal elements of :math:`\mathbf{A}` and :math:`\mathbf{B}` in the first row, and below the first row has the largest off-diagonal element in row :math:`i`, the second-largest off-diagonal element, etc. The elements are weighted by a factor :math:`0 < p < 1`, so that the smaller elements are considered less important for matching. The matrices can be truncated after a few terms; for example, after the size of elements falls below some threshold. A reasonable choice would be to stop after :math:`\lfloor \frac{-2\ln 10}{\ln p} +1\rfloor` rows; this ensures that the size of the elements in the last row is less than 1% of those in the first off-diagonal row. There are obviously many different ways to construct the matrices :math:`\mathbf{A}^0` and :math:`\mathbf{B}^0`. Another, even better, method would be to try to encode not only what the off-diagonal elements are, but which element in the matrix they correspond to. One could do that by not only listing the diagonal elements, but also listing the associated off-diagonal element. I.e., the columns of :math:`\mathbf{A}^0` and :math:`\mathbf{B}^0` would be, .. math:: \begin{bmatrix} a_{ii} \\ p \cdot a_{j_\text{max} j_\text{max}} \\ p \cdot \text{sgn}\left( a_{ij_\text{max}} \right) \underbrace{\text{max}}_{1 \le j \le n} \left(\left|a_{ij}\right|\right)\\ p^2 \cdot a_{j_{\text{max}-1} j_{\text{max}-1}} \\ p^2 \cdot \text{sgn}\left( a_{ij_{\text{max}-1}} \right) \underbrace{\text{max}-1}_{1 \le j \le n} \left(\left|a_{ij}\right|\right)\\ \vdots \end{bmatrix} In this case, you would stop the procedure after :math:`m = \left\lfloor {\frac{{ - 4\ln 10}}{{\ln p}} + 1} \right \rfloor` rows. Then one uses the :class:`procrustes.permutation.PermutationProcrustes` to match the constructed matrices :math:`\mathbf{A}^0` and :math:`\mathbf{B}^0` instead of :math:`\mathbf{A}` and :math:`\mathbf{B}`. I.e., .. math:: \underbrace{\text{max}}_{\left\{\mathbf{P} \left| {p_{ij} \in \{0, 1\} \atop \sum_{i=1}^n p_{ij} = \sum_{j=1}^n p_{ij} = 1} \right. \right\}} \text{Tr}\left[\mathbf{P}^\dagger \left(\mathbf{A^0}^\dagger\mathbf{B^0}\right)\right] Please note that the "umeyama_approx" might give inaccurate permutation matrix. More specificity, this is a approximated Umeyama method. One example we can give is that when we compute the permutation matrix that transforms :math:`A` to :math:`B`, the "umeyama_approx" method can not give the exact permutation transformation matrix while "umeyama", "normal1" and "normal2" do. .. math:: A = \begin{bmatrix} 4 & 5 & -3 & 3 \\ 5 & 7 & 3 & -5 \\ -3 & 3 & 2 & 2 \\ 3 & -5 & 2 & 5 \\ \end{bmatrix} \\ B = \begin{bmatrix} 73 & 100 & 73 & -62 \\ 100 & 208 & -116 & 154 \\ 73 & -116 & 154 & 100 \\ -62 & 154 & 100 & 127 \\ \end{bmatrix} \\ """ # check single argument if not isinstance(single, bool): raise TypeError(f"Argument single is not a boolean! Given type={type(single)}") # check inputs new_a, new_b = setup_input_arrays( a, b, unpad_col, unpad_row, pad, translate, scale, check_finite, weight ) # check that A & B are square in case of single transformation if single and new_a.shape[0] != new_a.shape[1]: raise ValueError( f"For single={single}, matrix A should be square but A.shape={new_a.shape}" "Check pad, unpad_col, and unpad_row arguments." ) if single and new_b.shape[0] != new_b.shape[1]: raise ValueError( f"For single={single}, matrix B should be square but B.shape={new_b.shape}" "Check pad, unpad_col, and unpad_row arguments." ) # print a statement if user-specified guess is not used if method.startswith("approx") and guess_p1 is not None: print(f"Method={method} does not use an initial guess, so guess_p1 is ignored!") if method.startswith("approx") and guess_p2 is not None: print(f"Method={method} does not use an initial guess, so guess_p2 is ignored!") # get the number of rows & columns of matrix A m, n = new_a.shape # assign & check initial guess for P1 if single and guess_p1 is not None: raise ValueError(f"For single={single}, P1 is transpose of P2, so guess_p1 should be None.") if not single: if guess_p1 is None: guess_p1 = np.eye(m) if guess_p1.shape != (m, m): raise ValueError(f"Argument guess_p1 should be either None or a ({m}, {m}) array.") # assign & check initial guess for P2 if guess_p2 is None: guess_p2 = np.eye(n) if guess_p2.shape != (n, n): raise ValueError(f"Argument guess_p2 should be either None or a ({n}, {n}) array.") # check options dictionary & assign default keys defaults = {"tol": 1.0e-8, "maxiter": 500, "k": 3} if options is not None: if not isinstance(options, dict): raise ValueError(f"Argument options should be a dictionary. Given type={type(options)}") # pylint: disable=C0201 if not all(k in defaults.keys() for k in options.keys()): raise ValueError( f"Argument options should only have {defaults.keys()} keys. " f"Given options contains {options.keys()} keys!" ) # update defaults dictionary to use the specified options defaults.update(options) # 2-sided permutation Procrustes with two transformations # ------------------------------------------------------- if not single: if method == "flip-flop": # compute permutations using flip-flop algorithm perm1, perm2, error = _permutation_2sided_2trans_flipflop( new_a, new_b, defaults["tol"], defaults["maxiter"], guess_p1, guess_p2 ) elif method == "k-opt": # compute permutations using k-opt heuristic search fun_error = lambda p1, p2: compute_error(new_a, new_b, p2, p1.T) perm1, perm2, error = kopt_heuristic_double( fun_error, p1=guess_p1, p2=guess_p2, k=defaults["k"] ) else: raise ValueError(f"Method={method} not supported for single={single} transformation!") return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=perm2, s=perm1) # 2-sided permutation Procrustes with one transformation # ------------------------------------------------------ # The (un)directed iterative procedure for finding the permutation matrix takes the square # root of the matrix entries, which can result in complex numbers if the entries are # negative. To avoid this, all matrix entries are shifted (by the smallest amount) to be # positive. This causes no change to the objective function, as it's a constant value # being added to all entries of a and b. shift = 1.0e-6 if np.min(new_a) < 0 or np.min(new_b) < 0: shift += abs(min(np.min(new_a), np.min(new_b))) # shift is a float, so even if new_a or new_b are ints, the positive matrices are floats # default shift is not zero to avoid division by zero later in the algorithm pos_a = new_a + shift pos_b = new_b + shift if method == "approx-normal1": tmp_a = _approx_permutation_2sided_1trans_normal1(a) tmp_b = _approx_permutation_2sided_1trans_normal1(b) perm = permutation(tmp_a, tmp_b).t elif method == "approx-normal2": tmp_a = _approx_permutation_2sided_1trans_normal2(a) tmp_b = _approx_permutation_2sided_1trans_normal2(b) perm = permutation(tmp_a, tmp_b).t elif method == "approx-umeyama": perm = _approx_permutation_2sided_1trans_umeyama(pos_a, pos_b) elif method == "approx-umeyama-svd": perm = _approx_permutation_2sided_1trans_umeyama_svd(a, b, lapack_driver) elif method == "k-opt": fun_error = lambda p: compute_error(pos_a, pos_b, p, p.T) perm, error = kopt_heuristic_single(fun_error, p0=guess_p2, k=defaults["k"]) elif method == "soft-assign": raise NotImplementedError elif method == "nmf": # check whether A & B are symmetric (within a relative & absolute tolerance) is_pos_a_symmetric = np.allclose(pos_a, pos_a.T, rtol=1.0e-05, atol=1.0e-08) is_pos_b_symmetric = np.allclose(pos_b, pos_b.T, rtol=1.0e-05, atol=1.0e-08) if is_pos_a_symmetric and is_pos_b_symmetric: # undirected graph matching problem (iterative procedure) perm = _permutation_2sided_1trans_undirected( pos_a, pos_b, guess_p2, defaults["tol"], defaults["maxiter"] ) else: # directed graph matching problem (iterative procedure) perm = _permutation_2sided_1trans_directed( pos_a, pos_b, guess_p2, defaults["tol"], defaults["maxiter"] ) else: raise ValueError(f"Method={method} not supported for single={single} transformation!") # some of the methods for 2-sided-1-transformation permutation procrustes does not produce a # permutation matrix. So, their output is treated like a guess, and the closest permutation # matrix is found using 1-sided permutation procrustes (where A=I & B=perm) # Even though this step is not needed for ALL methods (e.g. k-opt, normal1, & normal2), to # make the code simple, this step is performed for all methods as its cost is negligible. perm = permutation( np.eye(perm.shape[0]), perm, translate=False, scale=False, unpad_col=False, unpad_row=False, check_finite=True, ).t # compute error error = compute_error(new_a, new_b, t=perm, s=perm.T) return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=perm, s=perm.T)
def _permutation_2sided_2trans_flipflop( n: np.ndarray, m: np.ndarray, tol: float, max_iter: int, p0: Optional[np.ndarray] = None, q0: Optional[np.ndarray] = None, ): # two-sided permutation Procrustes with 2 transformations :math:` {\(\vert PNQ-M \vert\)}^2_F` # taken from page 64 in parallel solution of svd-related problems, with applications # Pythagoras Papadimitriou, University of Manchester, 1993 # initial guesses: set P1 to identity if guess P0 is not given, and compute Q1 using 1-sided # permutation procrustes where A=(P1N), B=M, & cost = A.T B p1 = p0 if p1 is None: p1 = np.eye(m.shape[0]) q1 = _compute_permutation_hungarian(np.dot(np.dot(n.T, p1.T), m)) # compute initial error1 = |(P1)N(Q1) - M| error1 = compute_error(n, m, q1, p1) step = 0 while error1 > tol and step < max_iter: # update P1 using 1-sided permutation procrustes where A=(NQ1).T, B=M.T, & cost = A.T B # 1-sided procrustes finds the right-hand-side transformation T, so to solve for P1, one # needs to minimize |Q.T N.T P.T - M.T| which is the same as original objective function. p1 = _compute_permutation_hungarian(np.dot(np.dot(n, q1), m.T)).T # update Q1 using 1-sided permutation procrustes where A=(P1N).T, B=M, & cost = A.T B q1 = _compute_permutation_hungarian(np.dot(np.dot(n.T, p1.T), m)) error1 = compute_error(n, m, q1, p1) step += 1 if step == max_iter: print(f"Maximum iterations reached in 1st case of flip-flop! error={error1} & tol={tol}") # initial guesses: set Q2 to identity if guess Q0 is not given, and compute P2 using 1-sided # permutation procrustes where A=(NQ2).T, B=M.T, & cost = A.T B q2 = q0 if q2 is None: q2 = np.eye(m.shape[1]) p2 = _compute_permutation_hungarian(np.dot(np.dot(n, q2), m.T)).T # compute initial error2 = |(P2)N(Q2) - M| error2 = compute_error(n, m, q2, p2) step = 0 while error2 > tol and step < max_iter: # update Q2 using 1-sided permutation procrustes where A=(P2N), B=M, & cost = A.T B q2 = _compute_permutation_hungarian(np.dot(np.dot(n.T, p2.T), m)) # update P2 using 1-sided permutation procrustes where A=(NQ2).T, B=M.T, & cost = A.T B p2 = _compute_permutation_hungarian(np.dot(np.dot(n, q2), m.T)).T error2 = compute_error(n, m, q2, p2) step += 1 if step == max_iter: print(f"Maximum iterations reached in 2nd case of flip-flop! error={error1} & tol={tol}") # return permutations corresponding to the lowest error if error1 <= error2: return p1, q1, error1 return p2, q2, error2 def _compute_permutation_hungarian(cost_matrix: np.ndarray) -> np.ndarray: # solve linear sum assignment problem to get the row/column indices of optimal assignment row_ind, col_ind = linear_sum_assignment(cost_matrix, maximize=True) # make the permutation matrix by setting the corresponding elements to 1 perm = np.zeros(cost_matrix.shape) perm[(row_ind, col_ind)] = 1 return perm def _approx_permutation_2sided_1trans_normal1(a: np.ndarray) -> np.ndarray: # This assumes that array_a has all positive entries, this guess does not match that found # in the notes/paper because it doesn't include the sign function. # build the empty target array array_c = np.zeros(a.shape) # Fill the first row of array_c with diagonal entries array_c[0, :] = a.diagonal() array_mask = ~np.eye(a.shape[0], dtype=bool) # get all the non-diagonal element array_c_non_diag = (a[array_mask]).T.reshape(a.shape[0], a.shape[1] - 1) array_c_non_diag = array_c_non_diag[ np.arange(np.shape(array_c_non_diag)[0])[:, np.newaxis], np.argsort(abs(array_c_non_diag)) ] # form the right format in order to combine with matrix A array_c_sorted = np.fliplr(array_c_non_diag).T # fill the array_c with array_c_sorted array_c[1:, :] = array_c_sorted # the weight matrix weight_c = np.zeros(a.shape) weight_p = np.power(2, -0.5) for weight in range(a.shape[0]): weight_c[weight, :] = np.power(weight_p, weight) # build the new matrix array_new array_new = np.multiply(array_c, weight_c) return array_new def _approx_permutation_2sided_1trans_normal2(a: np.ndarray) -> np.ndarray: # This assumes that array_a has all positive entries, this guess does not match that found # in the notes/paper because it doesn't include the sign function. array_mask_a = ~np.eye(a.shape[0], dtype=bool) # array_off_diag0 is the off diagonal elements of A array_off_diag = a[array_mask_a].reshape((a.shape[0], a.shape[1] - 1)) # array_off_diag1 is sorted off diagonal elements of A array_off_diag = array_off_diag[ np.arange(np.shape(array_off_diag)[0])[:, np.newaxis], np.argsort(abs(array_off_diag)) ] array_off_diag = np.fliplr(array_off_diag).T # array_c is newly built matrix B without weights # build array_c with the expected shape col_num_new = a.shape[0] * 2 - 1 array_c = np.zeros((col_num_new, a.shape[1])) array_c[0, :] = a.diagonal() # use inf to represent the diagonal element a_inf = a - np.diag(np.diag(a)) + np.diag([-np.inf] * a.shape[0]) index_inf = np.argsort(-np.abs(a_inf), axis=1) # the weight matrix weight_p = np.power(2, -0.5) weight_c = np.zeros((col_num_new, a.shape[1])) weight_c[0, :] = np.power(weight_p, 0) for index_col in range(1, a.shape[0]): # the index_col*2 row of array_c array_c[index_col * 2, :] = array_off_diag[index_col - 1, :] # the index_col*2-1 row of array_c array_c[index_col * 2 - 1, :] = a[index_inf[:, index_col], index_inf[:, index_col]] # the index_col*2 row of weight_c weight_c[index_col * 2, :] = np.power(weight_p, index_col) # the index_col*2 row of weight_c weight_c[index_col * 2 - 1, :] = np.power(weight_p, index_col) # the new matrix B array_new = np.multiply(array_c, weight_c) return array_new def _approx_permutation_2sided_1trans_umeyama(a: np.ndarray, b: np.ndarray) -> np.ndarray: # check whether A & B are symmetric (within a relative & absolute tolerance) is_a_symmetric = np.allclose(a, a.T, rtol=1.0e-05, atol=1.0e-08) is_b_symmetric = np.allclose(b, b.T, rtol=1.0e-05, atol=1.0e-08) # symmetrize A & B if not symmetric if not (is_a_symmetric and is_b_symmetric): a = _symmetrize_matrix(a) b = _symmetrize_matrix(b) # compute normalized normalized eigenvector of A & B # in some cases, A and B can be complex matrix (when symmetrizing non-symmetric A & B), # the np.linalg.eigh returns the eigenvalues and eigenvectors of a complex Hermitian # (conjugate symmetric) or a real symmetric matrix. _, ua = np.linalg.eigh(a) _, ub = np.linalg.eigh(b) # for complex input, x + iy, the absolute value is np.sqrt(x**2 + y**2) u_umeyama = np.dot(np.abs(ua), np.abs(ub.T)) return u_umeyama def _approx_permutation_2sided_1trans_umeyama_svd( a: np.ndarray, b: np.ndarray, lapack_driver: str ) -> np.ndarray: # compute u_umeyama perm = _approx_permutation_2sided_1trans_umeyama(a, b) # compute approximated umeyama matrix u, _, vt = scipy.linalg.svd(perm, lapack_driver=lapack_driver) u_umeyama_approx = np.dot(np.abs(u), np.abs(vt)) return u_umeyama_approx def _symmetrize_matrix(a: np.ndarray) -> np.ndarray: # symmetrized matrix A would be complex return (a + a.T) * 0.5 + (a - a.T) * 0.5 * 1j def _permutation_2sided_1trans_undirected( a: np.ndarray, b: np.ndarray, guess: np.ndarray, tol: float, iteration: int ) -> np.ndarray: """Solve for 2-sided permutation Procrustes with 1-transformation when A & B are symmetric.""" p_old = guess change = np.inf step = 0 while change > tol and step < iteration: # compute alpha matrix temp = np.dot(a, np.dot(p_old, b)) alpha = np.dot(p_old.T, temp) alpha = (alpha + alpha.T) / 2 # compute new permutation matrix & change p_new = p_old * np.sqrt(temp / np.dot(p_old, alpha)) change = np.trace(np.dot((p_new - p_old).T, (p_new - p_old))) # update permutation matrix p_old = p_new step += 1 if step == iteration: print(f"Maximum iteration reached! change={change} & tolerance={tol}") return p_new def _permutation_2sided_1trans_directed( a: np.ndarray, b: np.ndarray, guess: np.ndarray, tol: float, iteration: int ) -> np.ndarray: """Solve for 2-sided permutation Procrustes with 1-transformation.""" # Algorithm 2 from Appendix of Procrustes paper p_old = guess change = np.inf step = 0 while change > tol and step < iteration: # compute alpha matrix tmp1 = np.dot(a, np.dot(p_old, b.T)) tmp2 = np.dot(a.T, np.dot(p_old, b)) alpha = 0.25 * np.dot(p_old.T, tmp1 + tmp2) + np.dot((tmp1 + tmp2).T, p_old) # compute new permutation matrix & change p_new = p_old * np.sqrt((tmp1 + tmp2) / (2 * np.dot(p_old, alpha))) change = np.trace(np.dot((p_new - p_old).T, (p_new - p_old))) # update permutation matrix p_old = p_new step += 1 if step == iteration: print(f"Maximum iteration reached! change={change} & tolerance={tol}") return p_new