Source code for procrustes.orthogonal

# -*- coding: utf-8 -*-
# The Procrustes library provides a set of functions for transforming
# a matrix to make it as similar as possible to a target matrix.
#
# Copyright (C) 2017-2024 The QC-Devs Community
#
# This file is part of Procrustes.
#
# Procrustes is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# Procrustes is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>
#
# --
"""Orthogonal Procrustes Module."""

# import warnings

from typing import Optional

import numpy as np
import scipy

from procrustes.utils import ProcrustesResult, compute_error, setup_input_arrays

__all__ = [
    "orthogonal",
    "orthogonal_2sided",
]


[docs] def orthogonal( a: np.ndarray, b: np.ndarray, pad: bool = True, translate: bool = False, scale: bool = False, unpad_col: bool = False, unpad_row: bool = False, check_finite: bool = True, weight: Optional[np.ndarray] = None, lapack_driver: str = "gesvd", ) -> ProcrustesResult: r"""Perform orthogonal Procrustes. Given a matrix :math:`\mathbf{A}_{m \times n}` and a reference matrix :math:`\mathbf{B}_{m \times n}`, find the orthogonal transformation matrix :math:`\mathbf{Q}_{n \times n}` that makes :math:`\mathbf{AQ}` as close as possible to :math:`\mathbf{B}`. In other words, .. math:: \underbrace{\min}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger \right\}} \|\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2 This Procrustes method requires the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices to have the same shape, which is gauranteed with the default ``pad`` argument for any given :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices. In preparing the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices, the (optional) order of operations is: **1)** unpad zero rows/columns, **2)** translate the matrices to the origin, **3)** weight entries of :math:`\mathbf{A}`, **4)** scale the matrices to have unit norm, **5)** pad matrices with zero rows/columns so they have the same shape. Parameters ---------- a : ndarray The 2D-array :math:`\mathbf{A}` which is going to be transformed. b : ndarray The 2D-array :math:`\mathbf{B}` representing the reference matrix. pad : bool, optional Add zero rows (at the bottom) and/or columns (to the right-hand side) of matrices :math:`\mathbf{A}` and :math:`\mathbf{B}` so that they have the same shape. translate : bool, optional If True, both arrays are centered at origin (columns of the arrays will have mean zero). scale : bool, optional If True, both arrays are normalized with respect to the Frobenius norm, i.e., :math:`\text{Tr}\left[\mathbf{A}^\dagger\mathbf{A}\right] = 1` and :math:`\text{Tr}\left[\mathbf{B}^\dagger\mathbf{B}\right] = 1`. unpad_col : bool, optional If True, zero columns (with values less than 1.0e-8) on the right-hand side of the intial :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed. unpad_row : bool, optional If True, zero rows (with values less than 1.0e-8) at the bottom of the intial :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed. check_finite : bool, optional If True, convert the input to an array, checking for NaNs or Infs. weight : ndarray, optional The 1D-array representing the weights of each row of :math:`\mathbf{A}`. This defines the elements of the diagonal matrix :math:`\mathbf{W}` that is multiplied by :math:`\mathbf{A}` matrix, i.e., :math:`\mathbf{A} \rightarrow \mathbf{WA}`. lapack_driver : {'gesvd', 'gesdd'}, optional Whether to use the more efficient divide-and-conquer approach ('gesdd') or the more robust general rectangular approach ('gesvd') to compute the singular-value decomposition with `scipy.linalg.svd`. Returns ------- res : ProcrustesResult The Procrustes result represented as a class:`utils.ProcrustesResult` object. Notes ----- The optimal orthogonal matrix is obtained by, .. math:: \mathbf{Q}^{\text{opt}} = \arg \underbrace{\min}_{\left\{\mathbf{Q} \left| {\mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger} \right. \right\}} \|\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2 = \arg \underbrace{\max}_{\left\{\mathbf{Q} \left| {\mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger} \right. \right\}} \text{Tr}\left[\mathbf{Q^\dagger}\mathbf{A^\dagger}\mathbf{B}\right] The solution is obtained using the singular value decomposition (SVD) of the :math:`\mathbf{A}^\dagger \mathbf{B}` matrix, .. math:: \mathbf{A}^\dagger \mathbf{B} &= \tilde{\mathbf{U}} \tilde{\mathbf{\Sigma}} \tilde{\mathbf{V}}^{\dagger} \\ \mathbf{Q}^{\text{opt}} &= \tilde{\mathbf{U}} \tilde{\mathbf{V}}^{\dagger} The singular values are always listed in decreasing order, with the smallest singular value in the bottom-right-hand corner of :math:`\tilde{\mathbf{\Sigma}}`. Examples -------- >>> import numpy as np >>> from scipy.stats import ortho_group >>> from procrustes import orthogonal >>> a = np.random.rand(5, 3) # random input matrix >>> q = ortho_group.rvs(3) # random orthogonal transformation >>> b = np.dot(a, q) + np.random.rand(1, 3) # random target matrix >>> result = orthogonal(a, b, translate=True, scale=False) >>> print(result.error) # error (should be zero) >>> print(result.t) # transformation matrix (same as q) >>> print(result.new_a) # translated array a >>> print(result.new_b) # translated array b """ # check inputs new_a, new_b = setup_input_arrays( a, b, unpad_col, unpad_row, pad, translate, scale, check_finite, weight, ) if new_a.shape != new_b.shape: raise ValueError( f"Shape of A and B does not match: {new_a.shape} != {new_b.shape} " "Check pad, unpad_col, and unpad_row arguments." ) # calculate SVD of A.T * B u, _, vt = scipy.linalg.svd(np.dot(new_a.T, new_b), lapack_driver=lapack_driver) # compute optimal orthogonal transformation u_opt = np.dot(u, vt) # compute one-sided error error = compute_error(new_a, new_b, u_opt) return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=u_opt, s=None)
[docs] def orthogonal_2sided( a: np.ndarray, b: np.ndarray, single: bool = True, pad: bool = True, translate: bool = False, scale: bool = False, unpad_col: bool = False, unpad_row: bool = False, check_finite: bool = True, weight: Optional[np.ndarray] = None, lapack_driver: str = "gesvd", ) -> ProcrustesResult: r"""Perform two-sided orthogonal Procrustes with one- or two-transformations. **Two Transformations:** Given a matrix :math:`\mathbf{A}_{m \times n}` and a reference matrix :math:`\mathbf{B}_{m \times n}`, find two :math:`n \times n` orthogonal transformation matrices :math:`\mathbf{Q}_1^\dagger` and :math:`\mathbf{Q}_2` that makes :math:`\mathbf{Q}_1^\dagger\mathbf{A}\mathbf{Q}_2` as close as possible to :math:`\mathbf{B}`. In other words, .. math:: \underbrace{\text{min}}_{\left\{ {\mathbf{Q}_1 \atop \mathbf{Q}_2} \left| {\mathbf{Q}_1^{-1} = \mathbf{Q}_1^\dagger \atop \mathbf{Q}_2^{-1} = \mathbf{Q}_2^\dagger} \right. \right\}} \|\mathbf{Q}_1^\dagger \mathbf{A} \mathbf{Q}_2 - \mathbf{B}\|_{F}^2 **Single Transformations:** Given a **symmetric** matrix :math:`\mathbf{A}_{n \times n}` and a reference :math:`\mathbf{B}_{n \times n}`, find one orthogonal transformation matrix :math:`\mathbf{Q}_{n \times n}` that makes :math:`\mathbf{A}` as close as possible to :math:`\mathbf{B}`. In other words, .. math:: \underbrace{\min}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger \right\}} \|\mathbf{Q}^\dagger\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2 This Procrustes method requires the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices to have the same shape, which is gauranteed with the default ``pad`` argument for any given :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices. In preparing the :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices, the (optional) order of operations is: **1)** unpad zero rows/columns, **2)** translate the matrices to the origin, **3)** weight entries of :math:`\mathbf{A}`, **4)** scale the matrices to have unit norm, **5)** pad matrices with zero rows/columns so they have the same shape. Parameters ---------- a : ndarray The 2D-array :math:`\mathbf{A}` which is going to be transformed. b : ndarray The 2D-array :math:`\mathbf{B}` representing the reference matrix. single : bool, optional If True, single transformation is used (i.e., :math:`\mathbf{Q}_1=\mathbf{Q}_2=\mathbf{Q}`), otherwise, two transformations are used. pad : bool, optional Add zero rows (at the bottom) and/or columns (to the right-hand side) of matrices :math:`\mathbf{A}` and :math:`\mathbf{B}` so that they have the same shape. translate : bool, optional If True, both arrays are centered at origin (columns of the arrays will have mean zero). scale : bool, optional If True, both arrays are normalized with respect to the Frobenius norm, i.e., :math:`\text{Tr}\left[\mathbf{A}^\dagger\mathbf{A}\right] = 1` and :math:`\text{Tr}\left[\mathbf{B}^\dagger\mathbf{B}\right] = 1`. unpad_col : bool, optional If True, zero columns (with values less than 1.0e-8) on the right-hand side of the intial :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed. unpad_row : bool, optional If True, zero rows (with values less than 1.0e-8) at the bottom of the intial :math:`\mathbf{A}` and :math:`\mathbf{B}` matrices are removed. check_finite : bool, optional If True, convert the input to an array, checking for NaNs or Infs. weight : ndarray, optional The 1D-array representing the weights of each row of :math:`\mathbf{A}`. This defines the elements of the diagonal matrix :math:`\mathbf{W}` that is multiplied by :math:`\mathbf{A}` matrix, i.e., :math:`\mathbf{A} \rightarrow \mathbf{WA}`. lapack_driver : {"gesvd", "gesdd"}, optional Used in the singular value decomposition function from SciPy. Only allowed two options, with "gesvd" being less-efficient than "gesdd" but is more robust. Default is "gesvd". Returns ------- res : ProcrustesResult The Procrustes result represented as a class:`utils.ProcrustesResult` object. Notes ----- **Two-Sided Orthogonal Procrustes with Two Transformations:** The optimal orthogonal transformations are obtained by: .. math:: \mathbf{Q}_{1}^{\text{opt}}, \mathbf{Q}_{2}^{\text{opt}} = \arg \underbrace{\text{min}}_{\left\{ {\mathbf{Q}_1 \atop \mathbf{Q}_2} \left| {\mathbf{Q}_1^{-1} = \mathbf{Q}_1^\dagger \atop \mathbf{Q}_2^{-1} = \mathbf{Q}_2^\dagger} \right. \right\}} \|\mathbf{Q}_1^\dagger \mathbf{A} \mathbf{Q}_2 - \mathbf{B}\|_{F}^2 = \arg \underbrace{\text{max}}_{\left\{ {\mathbf{Q}_1 \atop \mathbf{Q}_2} \left| {\mathbf{Q}_1^{-1} = \mathbf{Q}_1^\dagger \atop \mathbf{Q}_2^{-1} = \mathbf{Q}_2^\dagger} \right. \right\}} \text{Tr}\left[\mathbf{Q}_2^\dagger\mathbf{A}^\dagger\mathbf{Q}_1\mathbf{B} \right] This is solved by taking the singular value decomposition (SVD) of :math:`\mathbf{A}` and :math:`\mathbf{B}`, .. math:: \mathbf{A} = \mathbf{U}_A \mathbf{\Sigma}_A \mathbf{V}_A^\dagger \\ \mathbf{B} = \mathbf{U}_B \mathbf{\Sigma}_B \mathbf{V}_B^\dagger Then the two optimal orthogonal matrices are given by, .. math:: \mathbf{Q}_1^{\text{opt}} = \mathbf{U}_A \mathbf{U}_B^\dagger \\ \mathbf{Q}_2^{\text{opt}} = \mathbf{V}_A \mathbf{V}_B^\dagger **Two-Sided Orthogonal Procrustes with Single-Transformation:** The optimal orthogonal transformation is obtained by: .. math:: \mathbf{Q}^{\text{opt}} = \arg \underbrace{\min}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger \right\}} \|\mathbf{Q}^\dagger\mathbf{A}\mathbf{Q} - \mathbf{B}\|_{F}^2 = \arg \underbrace{\text{max}}_{\left\{\mathbf{Q} | \mathbf{Q}^{-1} = {\mathbf{Q}}^\dagger\right\}} \text{Tr}\left[\mathbf{Q}^\dagger\mathbf{A}^\dagger\mathbf{Q}\mathbf{B} \right] Using the singular value decomposition (SVD) of :math:`\mathbf{A}` and :math:`\mathbf{B}`, .. math:: \mathbf{A} = \mathbf{U}_A \mathbf{\Lambda}_A \mathbf{U}_A^\dagger \\ \mathbf{B} = \mathbf{U}_B \mathbf{\Lambda}_B \mathbf{U}_B^\dagger The optimal orthogonal matrix :math:`\mathbf{Q}^\text{opt}` is obtained through, .. math:: \mathbf{Q}^\text{opt} = \mathbf{U}_A \mathbf{S} \mathbf{U}_B^\dagger where :math:`\mathbf{S}` is a diagonal matrix with :math:`\pm{1}` elements, .. math:: \mathbf{S} = \begin{bmatrix} { \pm 1} & 0 &\cdots &0 \\ 0 &{ \pm 1} &\ddots &\vdots \\ \vdots &\ddots &\ddots &0\\ 0 &\cdots &0 &{ \pm 1} \end{bmatrix} The matrix :math:`\mathbf{S}` is chosen to be the identity matrix. Examples -------- >>> import numpy as np >>> a = np.array([[30, 33, 20], [33, 53, 43], [20, 43, 46]]) >>> b = np.array([[ 22.78131838, -0.58896768,-43.00635291, 0., 0.], ... [ -0.58896768, 16.77132475, 0.24289990, 0., 0.], ... [-43.00635291, 0.2428999 , 89.44735687, 0., 0.], ... [ 0. , 0. , 0. , 0., 0.]]) >>> res = orthogonal_2sided(a, b, single=True, pad=True, unpad_col=True) >>> res.t array([[ 0.25116633, 0.76371527, 0.59468855], [-0.95144277, 0.08183302, 0.29674906], [ 0.17796663, -0.64034549, 0.74718507]]) >>> res.error 1.9646186414076689e-26 """ # if translate: # warnings.warn( # "The translation matrix was not well defined. \ # Two sided rotation and translation don't commute.", # stacklevel=2, # ) # Check inputs new_a, new_b = setup_input_arrays( a, b, unpad_col, unpad_row, pad, translate, scale, check_finite, weight, ) # check symmetry if single_transform=True if single: if not np.allclose(new_a.T, new_a): raise ValueError( f"Array A with {new_a.shape} shape is not symmetric. " "Check pad, unpad_col, and unpad_row arguments." ) if not np.allclose(new_b.T, new_b): raise ValueError( f"Array B with {new_b.shape} shape is not symmetric. " "Check pad, unpad_col, and unpad_row arguments." ) # two-sided orthogonal Procrustes with one-transformations if single: _, ua = np.linalg.eigh(new_a) _, ub = np.linalg.eigh(new_b) u_opt = np.dot(ua, ub.T) # compute one-sided error error = compute_error(new_a, new_b, u_opt, u_opt.T) return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=u_opt, s=u_opt.T) # two-sided orthogonal Procrustes with two-transformations ua, _, vta = scipy.linalg.svd(new_a, lapack_driver=lapack_driver) ub, _, vtb = scipy.linalg.svd(new_b, lapack_driver=lapack_driver) u_opt1 = np.dot(ua, ub.T) u_opt2 = np.dot(vta.T, vtb) error = compute_error(new_a, new_b, u_opt2, u_opt1.T) return ProcrustesResult(error=error, new_a=new_a, new_b=new_b, t=u_opt2, s=u_opt1.T)